The Number of Distinct Subsums of $\sum_{1}^{N} 1 / i$

By M. N. Bleicher and P. Erdös

Abstract

In this paper we improve the lower bounds for the number, $S(N)$, of distinct values obtained as subsums of the first N terms of the harmonic series. We obtain a bound of the form

$$
S(N) \geqslant e\left(\frac{N \log 2}{\log N} \prod_{3}^{k+1} \log _{j} N\right)
$$

whenever $\log _{k+1} N \geqslant k+1$, for $k \geqslant 3$. Slight modifications are needed for $k=1,2$. We begin by discussing the number $Q_{k}(N)$ of integers $n \leqslant N, n=p_{1} p_{2} \cdots p_{k}$, where $p_{i}>e^{\alpha p_{i-1}}, i=2, \cdots, k$. We prove that

$$
\frac{N}{\log N} \prod_{i=1}^{k+1} \log _{i} N \leqslant Q_{k}(N) \leqslant\left(1+\frac{k}{\log _{k+1} N}\right) \frac{N}{\log N} \prod_{i=3}^{k+1} \log _{i} N
$$

This bound is valid for $\log _{k+1} N \geqslant k+1$ and for $1 \leqslant \alpha \leqslant 2\left(1-e_{2}(4) / e_{3}(4)\right)$. The symbols $\log _{i} x$ and $e_{i}(x)$ are defined by

$$
\begin{array}{ll}
e_{0}(x)=x, & e_{i+1}(x)=e^{e_{i}(x)} \\
\log _{0} x=x, & \log _{i+1} x=\log \left(\log _{i} x\right)
\end{array}
$$

where $\log x$ denotes the logarithm to the base e.
In this paper we improve the lower bounds given in [2] and [3] for the number, $S(N)$, of distinct values obtained as subsums of the first N terms of the harmonic series. The estimates in [1], [2] and [3] were derived because the upper bound was needed for lower estimates of the denominators of Egyptian fractions. In this paper we concentrate on the lower bounds. We obtain a bound of the form

$$
S(N) \geqslant e\left(\frac{N \log 2}{\log N} \prod_{3}^{k+1} \log _{j} N\right)
$$

whenever $\log _{k+1} N \geqslant k+1$, for $k \geqslant 3$. Slight modifications are needed for $k=1,2$; see Corollaries $1,2,3$ and 4 for more details. In order to do this we begin by discussing the number $Q_{k}(N)$ of integers $n \leqslant N, n=p_{1} p_{2} \cdots p_{k}$ where $p_{i}>e^{\alpha p_{i-1}}$, $i=2, \cdots, k$. We first prove that

Received July 26, 1974.
AMS (MOS) subject classifications (1970). Primary 10A99, 10A25; Secondary 10B25.
Key words and phrases. Harmonic series, squarefree integers, prime numbers, distinct subsums.

$$
\frac{N}{\log N} \prod_{i=3}^{k+1} \log _{i} N \leqslant Q_{k}(N) \leqslant\left(1+\frac{k}{\log _{k+1} N}\right) \frac{N}{\log N} \prod_{i=3}^{k+1} \log _{i} N
$$

This bound is valid for $\log _{k+1} N \geqslant k+1$ and for $1 \leqslant \alpha \leqslant 2\left(1-e_{2}(4) / e_{3}(4)\right)$. The bounds on N and α are for convenience in evaluating the range of validity and the constants in the inequality, not for essential reasons. The symbols $\log _{i} x$ and $e_{i}(x)$ are defined by

$$
\begin{array}{ll}
e_{0}(x)=x, & e_{i+1}(x)=e^{e_{i}(x)} \\
\log _{0} x=x, & \log _{i+1} x=\log \left(\log _{i} x\right)
\end{array}
$$

where $\log x$ denotes the logarithm to the base e.
In fact we prove the following slightly stronger version.
Theorem. If $1 \leqslant \alpha \leqslant 2\left(1-e_{2}(4) / e_{3}(4)\right)=1.999 \cdots$, then:
For $k=1$,

$$
\frac{N}{\log N}\left(1+\frac{1}{2 \log N}\right) \leqslant Q_{1}(N)=\pi(N) \leqslant \frac{N}{\log N}\left(1+\frac{3}{2 \log N}\right)
$$

where the lower bound holds for $N \geqslant 59$ and the upper bound for $N \geqslant 2 ; Q_{1}(N)=0$ for $N<2$.

For $k=2$,

$$
\frac{N}{\log N}\left(\log _{3} N+\frac{1}{11}\right) \leqslant Q_{2}(N) \leqslant \frac{N}{\log N}\left(\log _{3} N+2\right)
$$

where the lower bound holds for $\log _{3} N \geqslant 2$ and the upper bound for $N \geqslant e_{3}(-2)=$ $3.1 \cdots$ (i.e., $\log _{3} N \geqslant-2$); $Q_{2}(N)=0$ for $N<22$.

For $k \geqslant 3$,

$$
\frac{N}{\log N} \prod_{3}^{k+1} \log _{j} N \leqslant Q_{k}(N) \leqslant \frac{N\left(\log _{k+1} N+k\right)}{\log N} \prod_{3}^{k} \log _{j} N
$$

where the lower bound holds for $\log _{k+1} N \geqslant k+1$ and the upper bound holds for $N \geqslant e_{k+1}(-2) ; Q_{k}(N)=0$ for $N \leqslant e_{k+1}(-.13 \cdots)=e_{k-2}(11)$.

Proof. Case 1: $k=1$. In this case $Q_{1}(N)=\pi(N)$, so that the result is well known, see [4, p. 69].

Case 2. $k=2$. Let $Q_{2}(N)$ be those integers counted by $Q_{2}(N)$; namely

$$
Q_{2}(N)=\left\{p q: p, q \text { prime, } e^{\alpha p}<q, p q \leqslant N\right\}
$$

The Upper Bound for $Q_{2}(N)$. Let L be the number which satisfies $e^{\alpha L} \cdot L=$ N. It follows that

$$
\begin{equation*}
Q_{2}(N)=\sum_{2 \leqslant p<L}\left(\pi(N / p)-\pi\left(e^{\alpha p}\right)\right), \tag{1}
\end{equation*}
$$

where p runs through the primes in the indicated interval. We see from the conditions on α that

$$
\begin{equation*}
L \leqslant \log N \tag{2}
\end{equation*}
$$

We thus deduce that

$$
\begin{equation*}
Q_{k}(N) \leqslant \sum_{2 \leqslant p \leqslant \log N} \frac{N}{p \log N / P}\left(1+\frac{3}{2 \log N / P}\right) . \tag{3}
\end{equation*}
$$

Since $\log N / P$ is almost constant on the interval under consideration, we obtain

$$
\begin{equation*}
Q_{2}(N) \leqslant \frac{N}{\log (N / \log N)}\left(1+\frac{3}{2 \log (N / \log N)}\right) \sum_{2}^{\log N} \frac{1}{p} . \tag{4}
\end{equation*}
$$

The value of $\Sigma 1 / p$ is well known, for example see [4, p. 70]. Thus we obtain

$$
\begin{equation*}
Q_{2}(N) \leqslant \frac{N}{\log N}\left(1+\frac{2 \log _{2} N}{\log N}\right)\left(\log _{3} N+B+\frac{1}{\log _{2}^{2} N}\right) \tag{5}
\end{equation*}
$$

which is valid for $N \geqslant 3$ and where $B=.26149 \cdots$. If $N \geqslant e^{4}$, i.e., $\log _{3} N \geqslant$ $\log _{2} 4>.326 \cdots$, then this can be simplified to

$$
\begin{equation*}
Q_{2}(N) \leqslant N\left(\log _{3} N+2\right) / \log N \tag{6}
\end{equation*}
$$

If $22 \leqslant N \leqslant e^{4}<55$, then $Q_{2}(N) \leqslant Q_{2}(54)=5$ together with $\log _{3} N \geqslant 0$ gives the upper bound of the theorem for $k=2$.

The Lower Bound for $Q_{2}(N)$. From the definition of $Q_{2}(N)$ we obtain

$$
\begin{equation*}
Q_{2}(N)=\sum_{1 \leqslant p \leqslant N} \sum_{1 \leqslant q \leqslant M} 1, \tag{7}
\end{equation*}
$$

where p and q run over primes in the indicated intervals and $M=\min \{N / p, \log p / \alpha\}$. Let. L be such that

$$
\begin{equation*}
\alpha N=L \log L \tag{8}
\end{equation*}
$$

so that $N / \log N<L<e N / \log N$, then

$$
\begin{equation*}
Q_{2}(N)=\sum_{1 \leqslant p \leqslant L} \sum_{1 \leqslant q \leqslant(\log p) / \alpha} 1+\sum_{L<p \leqslant N} \sum_{1 \leqslant q \leqslant N / P} 1 . \tag{9}
\end{equation*}
$$

Let Σ_{1} denote the first double sum and Σ_{2} the second. Since $\Sigma_{1} \geqslant 0$ we can obtain a lower bound for $Q_{2}(N)$ by obtaining a lower bound for Σ_{2}.

The Bounds for Σ_{2}. From the definition of Σ_{2} in (9) we obtain

$$
\begin{equation*}
\sum_{2}=\sum_{L<p \leqslant L^{\prime}} \pi(N / P)+\sum_{L^{\prime}<p \leqslant N / 2} \pi(N / P) \tag{10}
\end{equation*}
$$

where $L<L^{\prime}=N / p_{l}, p_{l}$ is the l th prime with $l \geqslant 7$ to be determined later. We note that

$$
\begin{equation*}
\sum_{L^{\prime}<p \leqslant N / 2} \pi(N / p)=\sum_{2 \leqslant p \leqslant p_{l}} \pi(N / p)-l \pi\left(N / p_{l}\right) . \tag{11}
\end{equation*}
$$

We shall frequently need to estimate sums of the above type where the index of the summation range over an interval of primes. There is a standard technique for converting the sum to a Stieltjes integral, with respect to $d \vartheta(x)$, integrating by parts twice with $\vartheta(x)$ approximated by x in between to obtain the following well-known lemma.

Lemma. If $f(x) \geqslant 0$ and $f^{\prime}(x)$ exists and is continuous and $0<a<b$

$$
\begin{aligned}
\sum_{a<p \leqslant b} f(p)= & \left.\frac{f(x)(\vartheta(x)-x)}{\log (x)}\right|_{a} ^{b}+\int_{a}^{b} \frac{f(x)}{\log x} d x \\
& -\int_{a}^{b}(\vartheta(x)-x) \frac{d}{d x}\left(\frac{f(x)}{\log x}\right) d x .
\end{aligned}
$$

We recall from [4] the estimates

$$
\begin{equation*}
|\vartheta(x)-x| \leqslant x /(2 \log x) \quad \text { for } x \geqslant 563 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\vartheta(x)-x \leqslant x /(2 \log x) \text { for } x>1 \tag{13}
\end{equation*}
$$

and the estimates

$$
\begin{equation*}
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x) \text { for } x \geqslant 59 \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x}{\log x}<\pi(x) \text { for } x \geqslant 17 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \text { for } x>1 \tag{16}
\end{equation*}
$$

We use (15) whịch holds for $N \geqslant 73$ and the lemma to estimate the first sum of (10); thus

$$
\begin{align*}
\sum_{L<p \leqslant L^{\prime}} & \frac{N}{p \log N / p} \\
= & N\left\{\left.\frac{\vartheta(x)-x}{x \log x \log N / x}\right|_{L} ^{L^{\prime}}+\int_{L}^{L^{\prime}} \frac{d x}{x \log x \log N / x}\right. \tag{17}\\
& \left.\quad-\int_{L}^{L^{\prime}}(\vartheta(x)-x) \frac{d}{d x}\left(\frac{1}{x \log x \log N / x}\right) d x\right\}
\end{align*}
$$

We next show that

$$
\begin{equation*}
\left|\int_{L}^{L^{\prime}}(\vartheta(x)-x) \frac{d}{d x}\left(\frac{1}{x \log x \log N / x}\right) d x\right| \leqslant \frac{\log _{3} N}{2 \log ^{2} N} . \tag{18}
\end{equation*}
$$

To do this we note that

$$
\left|\frac{d}{d x}\left(\frac{1}{x \log x \log N / x}\right)\right| \leqslant \frac{1}{x^{2} \log x \log N / x}
$$

and that the estimate of (12), $|\vartheta(x)-x|<x / 2 \log x$ are both valid for the range $N / \log N \leqslant x \leqslant N / 2$ when $N \geqslant e^{8.5}$. Thus

$$
\begin{equation*}
\left|\int_{L}^{L^{\prime}}(\vartheta(x)-x) \frac{d}{d x}\left(\frac{1}{x \log x \log N / x}\right) d x\right| \leqslant \int_{L}^{L^{\prime}} \frac{d x}{2 x \log ^{2} x \log N / x} \tag{19}
\end{equation*}
$$

Since $1 / 2 \log ^{2} x$ is almost constant on the interval involved it can be brought out of the integral and replaced by $1 / 2 \log ^{2} L$; what remains is the derivative of $-\log _{2} N / x$, and we get

$$
\begin{equation*}
\int_{L}^{L^{\prime}} \frac{d x}{2 x \log ^{2} x \log N / x} \leqslant\left.\frac{1}{2 \log ^{2} L}\left(-\log _{2} N / x\right)\right|_{L} ^{L^{\prime}} \tag{20}
\end{equation*}
$$

which yields (18).
We next evaluate the first integral in (17) by taking the $1 / \log x$ outside the integral as $1 / \log L^{\prime}$ and integrating the rest exactly to obtain

$$
\begin{equation*}
\frac{\log _{3} N}{\log N}\left(1+\frac{\log _{2} p_{l}}{\log _{3} N}+\frac{\log _{2} p_{l}}{\log N}\right) \leqslant \int_{L}^{L^{\prime}} \frac{d x}{x \log x \log N / x} \tag{21}
\end{equation*}
$$

We next note that

$$
\begin{equation*}
\left|\left(\left.\frac{\vartheta(x)-x}{x \log x \log N / x}\right|_{L} ^{L^{\prime}}\right)\right| \leqslant \frac{1}{2 \log ^{2} L \log N / L}+\frac{1}{2 \log ^{2} L^{\prime} \log N / L^{\prime}} \leqslant \frac{1}{2 \log ^{2} N} . \tag{22}
\end{equation*}
$$

Using (15) and (16), (11) and $N / p_{l} \geqslant 17$, which holds since $p_{l}<\log N$ and $\log _{3} N \geqslant 2$, we deduce

$$
\begin{align*}
\sum_{N / p_{l}<p \leqslant N / 2} \pi\left(\frac{N}{p}\right) & =\sum_{2 \leqslant p \leqslant p_{l}} \pi\left(\frac{-N}{p}\right)-l \pi\left(\frac{N}{17}\right) \\
& \geqslant \frac{N}{\log N / p_{l}}\left(\sum_{2 \leqslant p \leqslant p_{l}} \frac{1}{p}-\frac{l}{p_{l}}\left(1+\frac{3}{2 \log N / p_{l}}\right)\right) . \tag{23}
\end{align*}
$$

If $l / p_{l}<B$, then using $N \geqslant e_{3}(2)>e^{1600}$ and $p_{l}<\log N$,

$$
\begin{equation*}
\sum_{N / p_{l} \leqslant p \leqslant N / 2} \pi\left(\frac{N}{p}\right) \geqslant \frac{N}{\log N}\left(\log _{2} p_{l}+B-\frac{1}{2 \log ^{2} p_{l}}-\frac{l}{p_{l}}+\frac{\log p_{l}}{\log N}\right) . \tag{24}
\end{equation*}
$$

Now with the aid of (10), (11) and (24) as well as (17), (21), (22) and (24) we obtain for $\log _{3} N \geqslant 2$ and $l / p_{l} \leqslant B$,

$$
\begin{aligned}
\Sigma_{2} \geqslant \frac{N \log _{3} N}{\log N}\left(1-\frac{\log _{2} p_{l}}{\log _{3} N}+\right. & \frac{\log p_{l}}{\log N}-\frac{1}{2 \log N \log _{3} N} \\
& -\frac{1}{2 \log N}+\frac{\log _{2} p_{l}}{\log _{3} N}+\frac{B-l / p_{l}}{\log _{3} N} \\
& \left.-\frac{1}{2 \log ^{2} p_{l} \log _{3} N}+\frac{\log p_{l}}{\log _{3} N \log N}\right)
\end{aligned}
$$

Taking $p_{l}=1597, l=251$ so that all the previous conditions are satisfied and using $B=.261 \cdots, l / p_{l}=.157 \cdots, 1 / 2 \log ^{2} p_{l}<.0005$ and $\log _{3} N \geqslant 2$, we deduce

$$
\begin{equation*}
\sum_{2} \geqslant \frac{N \log _{3} N}{\log N}\left(1+\frac{1}{11 \log _{3} N}\right) \tag{26}
\end{equation*}
$$

Since $Q_{2}(N) \geqslant \Sigma_{1}+\Sigma_{2}$ and by (13), $\Sigma_{1} \geqslant 0$, (26) implies the desired lower bound of the theorem for the case $k=2$.

Case 3. $k \geqslant 3$. We now proceed by induction on k. Suppose $k>2$ and that for $2 \leqslant k^{\prime}<k$ the theorem is true for k replaced by k^{\prime}; we now show it is true for k.

The Lower Bound for $Q_{k}(N)$. Let $Q_{k}(N)$ denote the set of integers counted by $Q_{k}(N)$. As before let $L=N / \log N$. We claim that

$$
\begin{equation*}
2_{k}(N) \supset \bigcup_{L \leqslant p \leqslant N}\left\{q p: q \in 2_{k-1}(N / p)\right\} \tag{27}
\end{equation*}
$$

where the union is disjoint. The disjointness follows from the fact that $p \geqslant L=$ $N / \log N>\log N>q$ and thus distinct choices of p and q yield distinct products. To see the containment we note that since $k \geqslant 3, q$ must have at least two prime factors, so that the largest prime factor of q, say p^{\prime}, is at most $N / 2 p \leqslant \log N / 2$; thus

$$
\begin{equation*}
\log p \geqslant \log N-\log _{2} N \geqslant \alpha\left(\frac{\log N}{2}\right) \geqslant \alpha p^{\prime} \tag{28}
\end{equation*}
$$

so that $q p$ is one of the integers in $2_{k}(N)$.
The containment (27) leads immediately to the inequality

$$
\begin{equation*}
Q_{k}(N) \geqslant \sum_{L \leqslant p \leqslant L^{\prime}} Q_{k-1}(N / p) \tag{29}
\end{equation*}
$$

where L^{\prime} can have any value satisfying $L^{\prime} \geqslant L$. We define L^{\prime} by

$$
\begin{equation*}
L^{\prime}=N / e\left(\left(\log _{2} N\right)^{1 / \log _{4} N}\right) \tag{30}
\end{equation*}
$$

With this choice we can show that

$$
\begin{equation*}
\log _{k} N / p \geqslant \log _{k} N / L^{\prime} \geqslant\left(\log _{k+1} N\right)\left(1-\left(\log _{5} N\right) / \log _{4} N\right) \tag{31}
\end{equation*}
$$

For $k>3$, (31) yields

$$
\begin{equation*}
\log _{k} N / p \geqslant k \tag{32}
\end{equation*}
$$

while for $k=3$ (31) yields

$$
\begin{equation*}
\log _{3} N / p \geqslant 2 \tag{33}
\end{equation*}
$$

where we have used $\log _{k+1} N \geqslant k+1$.
From (32) and (33) we see that the hypothesis of the inductively assumed theorem is satisfied for estimating the summands $Q_{k-1}(N / p)$ in (29).

We define $\widetilde{Q}_{k}(x)$ by

$$
\begin{equation*}
\widetilde{Q}_{k}(x)=\frac{x}{\log x} \prod_{3}^{k+1} \log _{i} x \tag{34}
\end{equation*}
$$

thus in the range of summation in (29) by the inductive hypothesis $\widetilde{Q}_{k-1}(N / p) \leqslant$ $Q_{k-1}(N / p)$.

From the lemma we get

$$
\begin{align*}
Q_{k}(N) \geqslant & \left.\frac{\vartheta(x)-x}{\log x} \widetilde{Q}_{k-1}(N / x)\right|_{L} ^{L^{\prime}}+\int_{L}^{L^{\prime}} \frac{\widetilde{Q}_{k}(N / x)}{\log x} d x \tag{35}\\
& -\int_{L}^{L^{\prime}}(\vartheta(x)-x) \frac{d}{d x} \frac{\widetilde{Q}_{k}(N / x)}{\log x} d x
\end{align*}
$$

We first obtain lower estimates for the first and last terms in the RHS of (35) and estimate the middle term, which is the main term, last. By (12), the estimate $|\vartheta(x)-x|<x / 2 \log x$ is valid in the range under consideration. Since $x / 2 \log x$ is increasing in x while $\widetilde{Q}_{k-1}(N / x)$ is decreasing, we see that

$$
\begin{equation*}
\left.\left|\frac{\vartheta(x)-x}{\log x} \widetilde{Q}_{k-1}(N / x)\right|_{L}^{L^{\prime}} \right\rvert\, \leqslant 2 \frac{N}{2 \log ^{2} N} \cdot \widetilde{Q}_{k-1}(\log N) \tag{36}
\end{equation*}
$$

A straightforward calculation yields

$$
\begin{equation*}
\left|\frac{d}{d x}\left(\frac{\widetilde{Q}_{k-1}(N / x)}{\log x}\right)\right| \leqslant \frac{\widetilde{Q}_{k-1}(N / x)}{x \log x} \tag{37}
\end{equation*}
$$

Thus the absolute value of the last term of the RHS of (35) is bounded above by

$$
\begin{equation*}
\int_{L}^{L^{\prime}} \frac{\widetilde{Q}_{k-1}(N / x)}{\log ^{2} x} d x \leqslant \frac{1}{\log ^{2} L} \int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x \tag{38}
\end{equation*}
$$

Similarly for the main term

$$
\begin{equation*}
\int_{L}^{L^{\prime}} \frac{\widetilde{Q}_{k-1}(N / x)}{\log x} d x \geqslant \frac{1}{\log L^{\prime}} \int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x \tag{39}
\end{equation*}
$$

Putting together (35), (36), (38), and (39), we obtain
(40)

$$
Q_{k}(N) \geqslant\left(\frac{1}{\log L^{\prime}}-\frac{1}{\log ^{2} L}\right) \int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x
$$

$$
-\frac{N}{\log ^{2} N} \widetilde{Q}_{k-1}(\log N)
$$

We can evaluate the integral in (40) by parts with $u=\Pi_{3}^{k} \log _{j}(N / x)$ and $v=$ $-\log _{2}(N / x)$ to obtain

$$
\begin{align*}
\int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x= & -N \log _{2} N / x \prod_{3}^{k} \log _{j} N /\left.x\right|_{L} ^{L^{\prime}} \tag{41}\\
& +\int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x)\left(\sum_{i=3}^{k}\left(\prod_{i=3}^{i} \log _{j} N / x\right)^{-1}\right) d x .
\end{align*}
$$

Since

$$
\sum_{i=3}^{k}\left(\prod_{i=3}^{i} \log _{j} N / x\right)^{-1} \geqslant \frac{1}{\log _{3} N / x}
$$

(41) leads to

$$
\begin{aligned}
\int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x \geqslant & -N \prod_{2}^{k} \log _{j} N /\left.x\right|_{L} ^{L^{\prime}} \\
& +\int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) / \log _{3} N / x d x
\end{aligned}
$$

The last integral can be approximated by substituting for $\widetilde{Q}_{k-1}(N / x)$ and simplifying to get

$$
\begin{align*}
\int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) / \log _{3} N / x d x & =\int_{L}^{L^{\prime}} \frac{N}{x \log N / x} \prod_{4}^{k} \log _{j} N / x d x \\
& \geqslant N \prod_{4}^{k} \log _{j} N / L^{\prime} \cdot \int_{L}^{L^{\prime}} \frac{1}{x \log N / x} d x \\
& =N \prod_{4}^{k} \log _{j} N / L^{\prime}\left(-\log _{2} N /\left.x\right|_{L} ^{L^{\prime}}\right) \tag{43}\\
& =N \cdot \prod_{4}^{k} \log _{j} N / L^{\prime}\left(\log _{3} N-\frac{\log _{3} N}{\log _{4} N}\right)
\end{align*}
$$

Substituting this for the last term in (42) while evaluating the first and combining terms, we get

$$
\begin{aligned}
& \int_{L}^{L^{\prime}} \widetilde{Q}_{k-1}(N / x) d x \\
& \quad=N\left\{\prod_{3}^{k+1} \log _{j} N+\left(\prod_{4}^{k} \log _{j} N / L^{\prime}\right) \log _{3} N \log _{4} N\left(\frac{\log _{5} N-1}{\log _{4}^{2} N}\right)\right\} .
\end{aligned}
$$

Since $1 / \log L-1 / \log ^{2} L^{\prime}>1 / \log N$, we get from (40), and (44) that

$$
\begin{align*}
Q_{k}(N) \geqslant & \frac{N}{\log N} \prod_{3}^{k+1} \log _{j} N \\
& +\frac{N}{\log N} \log _{3} N \log _{4} N \prod_{4}^{k} \log _{j} N / L^{\prime}\left(\frac{\log _{5} N-1}{\log _{4}^{2} N}\right) \tag{45}\\
& -\frac{N}{\log N} \cdot \frac{1}{\log _{2} N} \prod_{4}^{k+1} \log _{j} N .
\end{align*}
$$

Since

$$
\log _{4} N / L^{\prime}=\log _{5} N+\log \left(1-\frac{\log _{5} N}{\log _{4} N}\right) \geqslant \log _{5} N\left(1-\frac{2}{\log _{4} N}\right)
$$

we see that the sum of the last two terms is positive. The desired lower bound follows.
The Upper Bound for $Q_{k}(N)$. We may suppose $N \geqslant e_{k-2}(11)$, for otherwise $Q_{k}(N)=0$.

We begin by establishing the following inequality:

$$
\begin{align*}
Q_{k}(N) \leqslant & \sum_{M \leqslant p \leqslant L} Q_{k-1}\left(\log p \log _{2}^{2} p\right)+\sum_{L<p \leqslant L^{\prime}} Q_{k-1}(N / p) \\
& +\sum_{L^{\prime}<p \leqslant N / N_{0}} Q_{k-1}(N / p)=\sum_{1}+\sum_{2}+\sum_{3} \tag{46}
\end{align*}
$$

where $M=e_{k-2}(11)$, a lower bound for the largest prime factor of elements of $2_{k-1}, L=N /\left(\log N \cdot \log _{2}^{2} N\right)$ and $L^{\prime}=\min \left\{N / \log _{3} N, N / N_{0}\right\}$, where N_{0} is the smallest element in 2_{k-1}. To see that (46) holds, consider $n \in 2_{k}(N)$, factor $n=p q$ where p is the largest prime factor, then n is counted by the appropriate sum depending on the range into which p falls. We see that in the first sum since $q=$ $p_{1} p_{2} \cdots p_{k-1}$ with $p_{k-1} \leqslant \log p / \alpha$ and $p_{i} \leqslant \log p_{i+1} / \alpha, \quad 1 \leqslant i<k-1$, $q \leqslant \log p \log _{2} p \cdots \log _{k-1} p \leqslant \log p \log _{2}^{2} p$. The last two sums follow from the fact that $p q=n \leqslant N$ and thus $q \leqslant N / p$.

For the remainder of the proof we suppose that $L^{\prime}=N / \log _{3} N$, for otherwise the last sum in (46) is zero and the range on the middle sum is shortened. In either case the inductive assumption applies to each $Q_{k-1}(N / p)$ of the middle sum.

To estimate Σ_{1} we note that there are at most $\pi(L)$ summands in which each is at
most $Q_{k-1}\left(\log L \log _{2}^{2} L\right)$ using the estimate $\pi(x) \leqslant 2 x / \log x$ and the inductive estimate for Q_{k-1} we obtain

$$
\begin{align*}
\sum_{1} & \leqslant \frac{2 L}{\log L} \cdot \frac{\log L}{\log _{2} L}\left(\log _{k} L+k-1\right) \prod_{3}^{k-1} \log _{j} L \\
& \leqslant \frac{2 N}{\log N} \cdot \frac{1}{\log _{2} N / \log N}\left(\log _{k} N+k-1\right) \prod_{3}^{k-1} \log _{j} N \tag{47}\\
& \leqslant \frac{3}{\log _{2} N} \cdot \frac{N}{\log N}\left(\log _{k} N+k-1\right) \prod_{3}^{k-1} \log _{j} N .
\end{align*}
$$

We next consider Σ_{3}. There are at most $\pi(N / 22)$ summands each of size at most $Q_{k-1}\left(N / L^{\prime}\right)=Q_{k-1}\left(\log _{3} N\right)$. Hence we conclude

$$
\begin{align*}
\sum_{3} & \leqslant \frac{2 N}{22 \log N / 22} \cdot \frac{\log _{3} N}{\log _{4} N}\left(\log _{k+3} N+k-1\right) \prod_{6}^{k+2} \log _{j} N \\
& \leqslant \frac{1}{10 \log _{4}^{2} N} \frac{N}{\log N}\left(\log _{k+1} N+k-1\right) \prod_{3}^{k} \log _{j} N \tag{48}
\end{align*}
$$

We now turn our attention to Σ_{2} which yields the main term. By use of the inductive hypothesis, the choice $L=N / \log N$, the estimate $\log _{j}\left(\log x \log _{2}^{2} x\right) \leqslant$ $\left(\log _{j+1} x\right)\left(1+2 / \log _{2} x\right)$, for $j \geqslant 3$, and the lemma we deduce

$$
\begin{align*}
\sum_{2} & =\sum_{L<p \leqslant L^{\prime}} \frac{N}{p \log N / p}\left(\log _{k} N / p+k-1\right) \prod_{3}^{k-1} \log _{j} N / p \\
& \leqslant N\left(\log _{k+1} N+k-1\right)\left(1+\frac{2}{\log _{2} N}\right)^{k} \prod_{4}^{k} \log _{j} N \sum_{L<p \leqslant L^{\prime}} \frac{1}{p \log N / p} \\
& \leqslant N\left(\log _{k+1} N+k-1\right)\left(1+\frac{2}{\log _{2} N}\right)^{k} \prod_{4}^{k} \log _{j} N \tag{49}\\
& \cdot\left\{\int_{L}^{L^{\prime}} \frac{d x}{x \log x \log N / x}+\int_{L}^{L^{\prime}}(\vartheta(x)-x) \frac{d}{d x}\left(\frac{1}{x \log x \log N / x}\right) d x\right. \\
& \left.+\left.\frac{\vartheta(x)-x}{x \log x \log N / x}\right|_{L} ^{L^{\prime}}\right\}
\end{align*}
$$

The last terms in the braces have been evaluated earlier in formulae (18) and (22), where in those formulae slightly different values of L and L^{\prime} were used. The $1 / \log x$ can be taken outside the integral as $1 / \log L$ and the rest integrated exactly to yield

$$
\begin{align*}
\sum_{2} \leqslant & N\left(\log _{k+1} N+k-1\right)\left(1+\frac{2}{\log _{2} N}\right)^{k} \prod_{4}^{k} \log _{j} N \\
& \cdot\left\{\frac{1}{\log L} \log _{2} N /\left.x\right|_{L} ^{L^{\prime}}+\frac{\log _{3} N}{2 \log ^{2} N}+\frac{1}{2 \log ^{2} N}\right\} \tag{50}\\
\leqslant & \frac{N}{\log N}\left(\log _{k+1} N+2\right) \prod_{3}^{k} \log _{3} N \\
& \cdot\left\{(1 + \frac { 2 } { \operatorname { l o g } _ { 2 } N }) ^ { k } \left(\left(1+\frac{2 \log _{2} N}{\log N}\right)\left(1-\frac{\log _{5} N}{\log _{3} N}\right)\right.\right. \\
& \left.\left.+\frac{1}{2 \log N}+\frac{1}{2 \log N \log _{3} N}\right)\right\}
\end{align*}
$$

Recalling that $L^{\prime}=N / \log _{3} N$ or, equivalently $\log _{3} N \geqslant N_{0} \geqslant 22$, we deduce that $\log _{5} N \geqslant 1$. Hence we see that the quantity in the braces is less than 1 .

It follows from (50), (48) and (47) that

$$
\begin{align*}
Q_{k}(N) & \leqslant \frac{N}{\log N}\left(\log _{k+1} N+k-1\right) \prod_{3}^{k} \log _{0} N\left\{1+\frac{1}{10 \log _{4}^{2} N}+\frac{3}{\log _{2} N}\right\} \tag{51}\\
& \leqslant \frac{N}{\log N}\left(\log _{k+1} N+k\right) \prod_{3}^{k} \log _{j} N
\end{align*}
$$

which is the desired upper bound.
The Number of Distinct Subsums of $\Sigma_{1}^{N} 1 / i$; a Lower Bound. Let $2(N)=$ $\bigcup_{k=1}^{\infty} Q_{k}(N)$ and $Q(N)=\Sigma_{1}^{\infty} Q_{k}(N)$, where we have taken $\alpha=3 / 2$ in defining $Q_{k}(N)$. Since for any N only finitely many $Q_{k}(N)$ are nonzero, there is no difficulty with the sum.

In order to relate the problem of distinct values of subsums of $\Sigma_{1}^{N} 1 / i$ to the previous problem we first prove the following theorem.

Theorem. If $S(N)$ denotes the number of distinct values of $\Sigma_{1}^{N} \epsilon_{k} / k$ as the ϵ_{k} assume all the 2^{N} possible combinations with $\epsilon_{k}=0,1$, then $S(N) \geqslant 2^{Q(N)}$.

Before proving the theorem we point out some immediate consequences of this theorem in combination with the previous theorem's lower bounds for $Q_{k}(N)$.

Corollary 1. For $N \geqslant 2$,

$$
S(N) \geqslant 2^{\pi(N)} \geqslant e\left(\frac{N \log 2}{\log N}\left(1+\frac{1}{2} \log N\right)\right)
$$

Corollary 2. For $\log _{3} N \geqslant 2$,

$$
S(N) \geqslant e\left(\frac{N \log 2}{\log N}\left(\log _{3} N+\frac{12}{11}+\frac{1}{2 \log N}\right)\right)
$$

Corollary 3. For $k \geqslant 3$ and $\log _{k+1} N \geqslant k+1$,

$$
S(N) \geqslant e\left(\frac{N \log 2}{\log N} \prod_{3}^{k+1} \log _{j} N\right)
$$

It may be noted that these corollaries improve the results on lower bounds for $S(N)$ obtained in [2] in two ways. The first is that the constant $1 / e$ in the bound in [2] is replaced by the larger $\log 2\left(\log _{3} N+12 / 11+1 / 2 \log N\right)$ in Corollary 2 and by $\log 2$ in Corollary 3. The second is the validity of the formula for a given k is extended to much smaller values of N.

Combining Corollaries 2 and 3 above with Theorem 3 of [2] we obtain
Corollary 4. For $\log _{2 r} N \geqslant 1$ and $r \geqslant 2$, choose t such that $e_{t}(1) \geqslant$ $2 r-t-1$. Let $k=2 r-t-1$. Then $k \geqslant r$ (equality only for $r=2,3$) and

$$
e\left(\frac{N \log 2}{\log N} \prod_{3}^{k+1} \log _{j} N\right) \leqslant S(N) \leqslant e\left(\frac{N \log _{r} N}{\log N} \prod_{3}^{r} \log _{j} N\right)
$$

Proof of Corollary 4. From the definition of k we see that if $\log _{2 r} N \geqslant 1$ then $\log _{k+1} N \geqslant e_{t}(1) \geqslant k$; hence Corollary 3 gives the lower bound for $r \geqslant 3$. For $r=k=2$ it is easy to see that $\log _{4} N \geqslant 1$ implies $\log _{3} N \geqslant 2$, hence Corollary 2 gives the lower bound. The upper bound is from Theorem 3 of [2]. The comment about equality of k and r is a trivial calculation. In fact, for $r=4, k=5$, while for $r=5, k=7$. The corollary is proved.

Proof of the Theorem. The idea of the proof is simple. We show that for each sequence $n_{1}, n_{2}, n_{3}, \cdots, n_{k}$ of distinct elements of $2(N)$ we get a distinct value for $\Sigma 1 / n_{i}$. Since $n_{i} \leqslant N$ and there are $2^{Q(N)}$ such sequences, the lower bound follows, if we can show the values are all distinct. Thus the theorem will be established if we prove the following lemma.

Lemma. Let $n_{1}, n_{2}, \cdots, n_{k}$ and $m_{1}, m_{2}, \cdots, m_{l}$ be two sequences of elements of $2(N)$; the elements in each of these sequences being distinct from other elements of that sequence. Then $\Sigma 1 / n_{i}=\Sigma 1 / m_{i}$ if and only if $k=l$ and, after possibly renumbering, $n_{i}=m_{i}, i=1,2, \cdots, k$.

Proof of the Lemma. We prove the "only if". The "if" half is trivial.
Let P be the largest prime factor of the product of the n_{i} and m_{i}. Let $n_{1}, n_{2}, \cdots, n_{k^{\prime}}$ and $m_{1}, m_{2}, \cdots, m_{l^{\prime}}$ be all those n_{i} and m_{i} in increasing order which have P as a factor. The proof is by induction on the size of P.

If $P=2, n_{i}, m_{i} \in\{1,2\}$ and clearly the distinctness of different sums is true. Similarly for $P=3$ when $n_{i}, m_{i} \in\{1,2,3\}$.

We now suppose that $P \geqslant 5$ and that for sequences which have only prime factors less than P, distinct sequences yield distinct values.

Define a / b, a reduced fraction, by

$$
\begin{equation*}
\frac{a}{b}=\sum_{1}^{k^{\prime}} \frac{1}{n_{i}}-\sum_{1}^{l^{\prime}} \frac{1}{m_{i}} \tag{52}
\end{equation*}
$$

We may assume $a / b \geqslant 0$, since otherwise we may interchange the m_{i} and n_{i} and proceed.

Let $n_{i}=P n_{i}^{\prime}$ and $m_{i}=P m_{i}^{\prime}$; thus

$$
\begin{equation*}
\frac{a}{b}=\frac{1}{P}\left(\sum_{1}^{k^{\prime}} \frac{1}{n_{i}^{\prime}}-\sum_{1}^{l^{\prime}} \frac{1}{m_{i}^{\prime}}\right) \tag{53}
\end{equation*}
$$

We next show that

$$
\begin{equation*}
k^{\prime}=l^{\prime} \quad \text { and } \quad n_{i}^{\prime}=m_{i}^{\prime}, \quad i=1,2, \cdots, k^{\prime} . \tag{54}
\end{equation*}
$$

If $a=0$ then the claim follows by induction since the n_{i}^{\prime} and m_{i}^{\prime} have largest prime factor less than P.

We thus consider the case $a \neq 0$ and derive a contradiction.
Since the n_{i} and m_{i} are in $Q(N)$ and P was the largest prime factor if we choose Q to be the largest prime such that $e^{3 Q / 2}<P$, then we know from the definition of $2(N)$ that no prime factor of any n_{i}^{\prime} or m_{i}^{\prime} exceeds Q. Since all the n_{i} and m_{i} are squarefree, we see that $d=\Pi_{P<Q} P=e^{\vartheta(Q)}$ is a common multiple for the n_{i}^{\prime} and m_{i}^{\prime}. Thus

$$
\begin{equation*}
\sum_{1}^{k^{\prime}} \frac{1}{n_{i}^{\prime}}-\sum_{1}^{l^{\prime}} \frac{1}{m_{i}^{\prime}}=\frac{c}{d} \tag{55}
\end{equation*}
$$

for some positive integer c. Since the largest prime factor of the n_{i}^{\prime} and m_{i}^{\prime} is at most Q and the n_{i}^{\prime} and m_{i}^{\prime} are in $2(N)$, we see that $Q \log Q \log _{2} Q \cdots \log _{r} Q \geqslant$ n_{i}, m_{i} where r is chosen so that $e^{2}>\log _{r} Q \geqslant 2$. Thus $c / d \leqslant \Sigma_{1}^{2} 1 / i<2 \log Q+$ 1. Hence $c<3 d \log Q$. It follows that

$$
\begin{equation*}
c<3 d \log Q<3 e^{\vartheta(Q)} \log Q<e^{3 \vartheta(Q) / 2}<P . \tag{56}
\end{equation*}
$$

(Note: For $Q=2,3$ a different argument is needed to show that $c<P$ since $3 \log Q>e^{\vartheta(Q) / 2}$. A trivial calculation suffices.)

Since $0<c<P$ it follows that $P \nmid c$. Since $a / b=1 / P \cdot c / d$ and $(a, b)=1$, we see that $P \nmid a$ and $P \mid b$.

But by hypothesis $\Sigma 1 / n_{i}=\Sigma 1 / m_{i}$, thus

$$
\frac{a}{b}=\sum_{1}^{k^{\prime}} \frac{1}{n_{i}}-\sum_{1}^{l^{\prime}} \frac{1}{m_{i}}=\sum_{i>l^{\prime}} \frac{1}{m_{i}}-\sum_{i>k^{\prime}} \frac{1}{n_{i}}=\frac{r}{s}
$$

where we may take $s=e^{\vartheta(P-1)}$, since all the $n_{i}, i>k^{\prime}$, and all the $m_{i}, i>l^{\prime}$, have prime factors less than P. We deduce that $P \nmid s ;$ but $a / b=r / s$ and $(a, b)=1$ and $P \mid b$, thus $P \mid s$, a contradiction. Thus $a / b=0$, and as noted before the equalities of (54) follow. But (54) implies $n_{i}=m_{i}$ for $i=1,2, \cdots, k^{\prime}=l^{\prime}$. Thus

$$
\sum_{i=k^{\prime}+1}^{k} \frac{1}{n_{i}}=\sum_{i=k^{\prime}+1}^{l} \frac{1}{m_{i}}
$$

and all prime factors are less than P. By induction $k=l$ and $n_{i}=m_{i}$ for $i=k^{\prime}+$ $1, k^{\prime}+2, \cdots, k$.

The lemma is established.
Conclusion of the Proof of the Theorem. From the lemma we see that every distinct subset of $2(N)$ yields a distinct value for $\Sigma_{1}^{N} \epsilon_{k} / k$ by setting $\epsilon_{k}=1$ for members of the subset and $\epsilon_{k}=0$ otherwise. Thus $S(N) \geqslant 2^{Q(N)}$, as claimed.

The theorem is established.

Mathematics Department

University of Wisconsin
Madison, Wisconsin 53706
Bell Laboratories
Murray Hill, New Jersey 07974

1. M. N. BLEICHER \& P. ERDÖS, "Denominators of Egyptian fractions", J. Number Theory (To appear.)
2. M. N. BLEICHER \& P. ERDÖS, "Denominators of Egyptian fractions. II" (To appear.)
3. M. N. BLEICHER \& P. ERDÖS, "The number of distinct subsums of $1+1 / 2+1 / 3+$ $1 / 4+\cdots+1 / N$, Notices Amer. Math. Soc., v. 20, 1973. Abstract \#706-10-3.
4. J. B. ROSSER \& L. SCHOENFELD, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, pp. 64-94. MR 25 \#1139.
